Correcting times for different length sailing courses

${ }^{1}$ R.E. Deakin and S.R. Deakin
Dunsborough, WA, 6281, Australia
email: randm.deakin@gmail.com
15-Jan-2024

1 Introduction

The Dunsborough Bay Yacht Club (DBYC) is a small off-the-beach club on Geographe Bay, Western Australia. Club members sail mono- and multihull yachts of the following classes: Pacer, Laser, Windrush, F18 (Nacra), Flying Ant and Minnow. The fleets for club racing are usually small, ($6-15$ boats) and the courses (triangles, trapezoids, windward/return) are laid to suit the wind and it is often the case that several short races of 30-40 minutes duration are held on an afternoon of sailing. To ensure that sailors are not waiting for long periods between races, faster yachts are assigned to fleet A and sail course A , and slower yachts are assigned to fleet B and sail a shorter course B, with the aim of all yachts finishing within a 5-10minute period.

If handicap race results are required for the combined fleet, then the elapsed times (ET) of yachts in fleet A sailing course A (the longer course) need to be scaled to represent elapsed times they might have had, if they had sailed the shorter course B.

We show, in the following sections:
(i) A plausible method for determining the distance a yacht sails during a race that comprises beating, reaching, and running. We call this distance the sailing length, and it will be longer than the course length which is the sum of the distances between marks rounded in the race.
(ii) A plausible method of calculating scaled elapsed times (SET) for each of the k yachts in fleet A they may have had if they had sailed a shorter course B

$$
\begin{equation*}
S E T_{k}=E T_{k} \times S L R \tag{1}
\end{equation*}
$$

Where $S L R$ is the sailing length ratio and

$$
\begin{equation*}
S L R=\frac{\text { sailing length of shorter course } B}{\text { sailing length of longer course } A} \tag{2}
\end{equation*}
$$

Sailing Courses A and B and Course Lengths

For the purposes of this paper, the courses A and B are both sailed around marks forming 45° right-angled triangles shown in Figure 1. The windward marks are 1 and X , the gybe marks are 2 and Y , and the leeward marks are 3 and X . Races start in the vicinity of 3 and Z and finish in the vicinity of 1 and X .
For the course A triangle, the windward leg $a=1000 \mathrm{~m}$ and the reaching legs 1-2 and 2-3 are both of length
$\frac{a}{\sqrt{2}}=707 \mathrm{~m}$ (nearest metre).
For the course B triangle, the windward leg $b=750 \mathrm{~m}$ and the reaching legs $\mathrm{X}-\mathrm{Y}$ and $\mathrm{Y}-\mathrm{Z}$ are both of
length $\frac{b}{\sqrt{2}}=530 \mathrm{~m}$ (nearest metre).

[^0]

Figure 1. Triangle for course A (left), triangle for course B (right)
Course A (the longer course) in mark rounding order is: Start-1-2-3-1-3-Finish leaving all marks to port. Or, triangle, windward/return, beat to finish and a yacht sailing this course would have sailed 3 beats, 2 reaches and 1 run for a course length $=3(1000)+2(707)+1(1000)=5414 \mathrm{~m}$

Course B (the shorter course) in mark rounding order is: Start-X-Y-Z-X-Z-Finish leaving all marks to port. Or, triangle, windward/return, beat to finish and a yacht sailing this course would also have sailed 3 beats, 2 reaches and 1 run for a courselength $=3(750)+2(530)+1(750)=4060 \mathrm{~m}$.

Sailing Length - Windward beat

A yacht cannot sail directly into the wind, so if she needs to sail to a windward mark the mainsail boom is set (on the port or starboard side) so that she is close hauled or beating to windward and her direction is at an angle θ to the wind, and θ (Greek symbol theta) is the true wind angle ${ }^{2}$. At some stage, she needs to change direction towards the mark and the mainsail boom will pass 'through the wind' and be set, closehauled on the opposite side of the boat and her direction will again be at an angle θ to the wind. This maneuver is known as a tack and Figure 2 shows two possible sailing courses of a yacht on a windward beat.
Say the 1 st course (dotted line) is the course $3-\mathrm{A}-\mathrm{B}-\mathrm{C}-1$ where she tacks 3 times, and the 2 nd course (dashed line) is $3-\mathrm{D}-1$ where she tacks once. If the wind is steady and the true wind angle θ remains constant, the two sailing courses are the same length. This relationship between a course with one tack and a course with 3 tacks will hold true for courses with $2,3,4,5$, etc. tacks., and in general, if x is the leg length, the distance between the leeward mark 3 and the windward mark 1, then

$$
\begin{equation*}
\text { sailing length (upwind) }=\frac{x}{\cos \theta}=x \sec \theta \quad \text { where }|\theta|<90^{\circ} \tag{3}
\end{equation*}
$$

[The notation $|\theta|$ means the magnitude of θ and if $\theta=-45^{\circ}$ then $|\theta|=45$.]

[^1]

Figure 2. Sailing course options on the windward beat

Sailing Length - Downwind run

A yacht sailing directly downwind has a true wind angle $\theta=180^{\circ}$ and this will be the yacht's slowest downwind direction. To complete a downwind leg in the shortest time a yacht should sail a course with true wind angle θ of approximately 150° and an optimum value of θ for a particular yacht could be determined from its polar diagram. A yacht sailing a downwind course where $\theta=150^{\circ}$ will have its mainsail boom set to one side of the yacht or the other, and at some stage will need to change direction so that θ is once again 150° but its mainsail boom will be set on the opposite side of the yacht. At some stage during this manoeuvre, known as a gybe, the wind will be directly astern, and the sailor needs to avoid the boom as it swings from one side to the other.

A diagram like Figure 2 will reveal that a yacht gybing downwind on a run between a windward mark and a leeward mark that are distance x apart (x is the leg length) will sail a course with a length given by

$$
\begin{equation*}
\text { sailing length }(\text { downwind })=\frac{-x}{\cos \theta}=-x \sec \theta \quad \text { where } 90^{\circ}<|\theta|<180^{\circ} \tag{4}
\end{equation*}
$$

[Note that equations 3 and 4 differ by a minus sign and this is because the true wind angle θ on a beat will have a magnitude less than 90° where the cosine (and secant) will be positive, and on a run, the true wind angle will have a magnitude greater than 90° and less than 180° where the cosine (and secant) will be negative.]

Sailing Length - Reach

Reaches on a yachting course usually have true wind angles with magnitudes between 110° and 150° and the fastest time for a reaching leg is achieved when the sailing direction is the same as the course direction.
Hence for reaches,

$$
\begin{equation*}
\text { sailinglength }(\text { reach })=\text { leglength } x \tag{5}
\end{equation*}
$$

Sailing Length for Courses A and B

Tables 1 and 2 show the information needed for calculating the sailing length of each leg of the course using formula (3), (4), or (5) as appropriate.

Course A: Start-1-2-3-1-3-Finish					
Leg	Point of sail	Leg length x	True wind angle θ	Sailing length formula	Sailing Length
Start-1	Beat	1000 m	45°	$S L=x \sec \theta$	1414 m
$1-2$	Reach	707	135°	$S L=x$	707
$2-3$	Reach	707	135°	$S L=x$	707
$3-1$	Beat	1000	45°	$S L=x \sec \theta$	1414
1-3	Run	1000	150°	$S L=-x \sec \theta$	1155
3-Finish	Beat	1000	45°	$S L=x \sec \theta$	1414
Course length	5414 m	Course sailing length	$\mathbf{6 8 1 1} \mathbf{~ m}$		

Table 1

Course B: Start-X-Y-Z-X-Z-Finish												
Leg	Point of sail	Leg length x	True wind angle θ	Sailing length formula	Sailing Length							
Start-X	Beat	750 m	45°	$S L=x \sec \theta$	1061 m							
X-Y	Reach	530	135°	$S L=x$	530							
Y-Z	Reach	530	135°	$S L=x$	530							
Z-X	Beat	750	45°	$S L=x \sec \theta$	1061							
X-Z	Run	750	150°	$S L=-x \sec \theta$	866							
Z-Finish	Beat	750	45°	$S L=x \sec \theta$	1061							
Course length							4060 m	Course sailing length				$\mathbf{5 1 0 9} \mathbf{~ m}$

Table 2

Scaled Elapsed Times

Suppose a Fleet A yacht sails Course A in an elapsed time ET of $42 \mathrm{~m} 50 \mathrm{~s}=2570 \mathrm{~s}$ where $\mathrm{m}=$ minute and s $=$ second. We could say that this yacht sailed at the rate of $2570 \mathrm{~s} / 6811 \mathrm{~m}$, or $377.3308 \mathrm{~s} / \mathrm{km}$ where $\mathrm{m}=$ metre and $\mathrm{km}=$ kilometre.

It would be reasonable to assume that her scaled elapsed time (SET) around the shorter course B would be: $S E T=377.3308 \times 5.109=1927.783 \mathrm{~s}=32 \mathrm{~m} 08 \mathrm{~s}$. Since the sailing rate 377.3308 is derived from the yacht's elapsed time/sailing length of course A we could express the scaled elapsed time as

$$
S E T=2570 \times \frac{5109}{6811}=E T \times \frac{\text { sailing length course } B}{\text { sailing length course } A}
$$

We call the last term in the equation above the sailing length ratio (SLR) and

$$
S L R=\frac{\text { sailing length course } B}{\text { sailing length course } A}
$$

giving

$$
S E T=E T \times S L R
$$

These last two equations are our equations (1) and (2)

We feel that the previous sections give a plausible explanation of sailing length and our equations (1) to (5) based on the assumptions:
(i) The true wind angles for a beat and run respectively are $\theta=45^{\circ}$ and 150°,
(ii) The true wind direction and velocity remain constant during the race, and
(iii) The percentages of beat, reach and run for the two courses A and B are the same.

[^0]: ${ }^{1}$ Rodney and Shayne Deakin (brothers) are volunteers at the Dunsborough Bay Yacht Club, Western Australia.

[^1]: ${ }^{2}$ The true wind angle θ is measured positive clockwise and negative anticlockwise from 0° to 180° with the zero direction directly into the wind.

